
PVRPM
Release 1.5.0

Brandon Silva, Paul Lunis

Jan 25, 2022

TUTORIALS:

1 About 1
1.1 SAM/PVRPM Assumptions / Limitations . 1
1.2 Getting Started . 1
1.3 Installation . 9
1.4 Logic Diagram . 10
1.5 Example YAML Configuration . 12
1.6 pvrpm . 23

2 Indices and tables 25

i

ii

CHAPTER

ONE

ABOUT

In photovoltaics (PV), the ability to perform an accurate techno-economic analysis is essential. Creating economically
efficient PV systems is beneficial to both consumers and producers alike. This package: Python PhotoVoltaic Reliabil-
ity Performance Model (PyPVRPM), fills this need. PyPVRPM is a simulation tool that uses NREL’s SAM software
to model the performance of a PV plant throughout its lifetime. It simulates failures, repairs, and monitoring across the
lifespan based on user-defined distributions and values. This allows a more accurate representation of cost and avail-
ability throughout a lifetime than SAM’s base simulation done from the GUI. By varying repair rates and monitoring
solutions, one can compare different configurations to find the most optimal setup for implementing an actual PV power
plant.

A few assumptions are taken in the tool, alongside specific ways calculations are made. Please see the logic diagram
to understand how the simulation works. Also, view the example configuration to get an idea of setting up your case.

PVRPM Requires a valid SAM case created in its GUI before use. The SAM case provides the information for PVRPM
to operate, alongside simulations using its LCOE calculator defined in the case, weather files, etc. Please see the getting
started tutorials to learn how to set up your SAM case and PVRPM YAML configuration.

1.1 SAM/PVRPM Assumptions / Limitations

PVRPM makes a few assumptions in order to be able to run a realistic simulation efficiently.

TODO

1.2 Getting Started

PVRPM enhances SAM’s models for PV systems to obtain a more accurate LCOE than its base simulation. It also
allows studying the effects of monitoring and repair techniques on PV systems throughout their lifetime.

To get started, create a new SAM case in the SAM GUI. From there, you must choose the Detailed Photovoltaic
model for PVRPM to work. This is required because PVRPM need’s specific parameters that only exist in this model.

Then, choose your financial model. It must be a financial model that supports lifetime losses. Please read SAM’s
documentation for help in setting up the case.

Once that is set up, you can download the example configuration and modify it as needed. Below explains from start
to finish of how to run a simulation with PVRPM.

1

PVRPM, Release 1.5.0

1.2.1 Exporting the SAM Case

PVRPM works by reading the information in your SAM case and the PVRPM YAML configuration to properly run
the simulation. For the first step, you need to export your SAM case to JSON files, which PVRPM uses to read in your
SAM case.

To do this: 1. Open the SAM GUI, then open your .sam case file. 2. Once it is open, click the drop-down menu for the
case, which is located next to the case name on the top bar. 3. Click Generate Code, then JSON for inputs. 4. A file
explorer window will open, allowing you to select a place to save the JSON files. Select an empty folder.

Once this is done, the selected folder will contain a few JSON files. The names of these files will follow the convention
of case-name_module.json where case-name is the name of the case, and module is the module that JSON represents.
Pay attention to what modules you have; you’ll need to know that for the next part. You can remove the .h and .so files.

1.2.2 Configuring PVRPM

This will go over every configuration option to set up the case study step by step. The example configuration is also
heavily commented on to help with the parameters. Also, please study the logic diagram as it can help when setting
up the configuration here. Also note all of the values listed in examples are entirely arbitrary and do not represent a
realistic case.

1.2.3 Module Order

These modules correspond to the modules listed in the JSON files you obtained. The modules must be simulated in
the correct order for PVRPM to properly run simulations using PySAM (SAM’s Python interface). A typical order is
in the example, but you may need to modify it depending on your case.

To make the module order easy to set up, go to this website: https://nrel-pysam.readthedocs.io/en/master/Configs.
html#sam-simulation-configurations

Then, find the modules you have under SSC Compute Modules column in the table; the SAM configuration column
should be one of the Detailed PV Model rows. Once you find one containing all your modules, put them in the order
as they appear in the SSC Compute Modules column.

1 module_order: # the order the modules of this case should be executed
2 # check to see what modules you use by the name of the json output files
3 # typically, this should be Pvsamv1 -> grid -> utiltiy -> others
4 # see https://nrel-pysam.readthedocs.io/en/master/Configs.html#sam-

→˓simulation-configurations
5 # Only detailed PV models are supported, which is Pvsamv1, your case must have this␣

→˓module
6 # Also, only LCOE calculators that support lifetime are allowed, PVRPM will check this␣

→˓and notify you if your LCOE calculator doesn't support lifetime
7 - Pvsamv1
8 - Grid
9 - Utilityrate5

10 - Cashloan

2 Chapter 1. About

https://nrel-pysam.readthedocs.io/en/master/Configs.html#sam-simulation-configurations
https://nrel-pysam.readthedocs.io/en/master/Configs.html#sam-simulation-configurations

PVRPM, Release 1.5.0

1.2.4 Run Setup

Here, set the results folder location. On Windows, use only one backslash to separate directories; you do not need to
escape them or spaces. Then set the number of realizations you want to run and the confidence interval for calculating
results.

The results folder and number of realizations can be overridden from the command line.

1 ### Run Setup ###
2 # results folder doesn't need to exist, it will be created if it doesnt already
3 # For windows use single backslash. Do not need to escape spaces in folder names
4 results_folder: /path/to/results/folder
5 num_realizations: 2 # number of realizations to run
6 conf_interval: 90 #XX % confidence interval around the mean will be calculated for␣

→˓summary results

1.2.5 Case Setup

Set up the basics of the case. Set the number of trackers, combiners, and transformers. Set num_trackers to 0 if you
are not using trackers. The worst-case tracker can be set to true if you are using trackers. This means that failures in
tracking components result in them being stuck in the worst way: the module is pointing the opposite of the sun’s travel
arc.

1 ### Case Setup ###
2 num_combiners: 2 # total number of DC combiner boxes
3 num_transformers: 1 # total number of Transformers
4 num_trackers: 2 # total number of trackers
5

6 ### Financial Inputs ###
7 present_day_labor_rate: 100 # dollars per hour
8 inflation: 2.5 # in percent
9

10 ### Failure Tracker Algorithm ###
11 use_worst_case_tracker: false

1.2.6 Component Level Setup

Each component level requires a setup of failures, monitoring, and repairs. This is required for module, string, combiner,
inverter, disconnect, transformer, and grid. However, if you are not setting a component level to fail (can_fail: false),
you can remove the rest of the sections below it. For example, if string’s can_fail: false, I can remove the failure,
monitoring, and repair sections.

There are many options for types of failures, monitoring, and the component, alongside various combinations to get
different behaviors.

Keep in mind the way these operations are as follows:

1. First, using the distributions defined for failures, monitoring, and repairs, a time_to_failure, time_to_detection,
and time_to_repair is generated for each component.

2. time_to_failure then counts down to 0. Once a failure occurs, time_to_detection counts down to 0 (if monitoring
is defined). Finally, time_to_repair counts to 0, which repairs the component and resets these values.

1.2. Getting Started 3

PVRPM, Release 1.5.0

Component Behaviors

can_fail can be set to true or false, which dictates whether the components in the component level (module, string,
etc.) can fail. If this is false, then nothing will fall for this level. You can remove the failures, repairs, and monitoring
sections. can_repair dictates if the components can be repaired at this level. Typically, leave this true if components
can fail. can_monitor turns on or off component-level monitoring. This signifies some type of monitoring in place; if
you want to simulate this type of monitoring, set this to true.

Warranty

Components can be set to have a warranty. Components covered under warranty do not incur repair costs when they
are repaired. A repaired component resets the warranty to the specified time in this section. For no warranty, remove
this section.

Distributions for Failures, Repairs, Monitoring

Every failure, repair, and monitoring mode requires a distribution to be defined that dictates how long until the specified
action occurs.

PVRPM has some built-in distributions, where only a mean and standard deviation is needed to model the distribution
properly. Under the hood, PVRPM uses scipy.stats distributions to generate samples. However, scipy.stats documen-
tation for each function is unclear on how to convert the mean and std into usable values for the distribution, which is
why PVRPM will do that for you. However, not every single scipy distribution is wrapped by PVRPM. These are the
distributions wrapped by PVRPM (use these as the distribution option):

• exponential

• normal

• uniform

• lognormal

• weibull

Using these distributions as the distribution parameter for any failure, repair, or monitoring only requires you to provide
the mean and standard deviation in days. The weibull distribution also allows you to give the shape for this distribution
instead of the standard deviation. On the Wikipedia page for the weibull distribution is the parameter k lambda is
calculated from the mean. Using the std option, make sure it is large since weibull distributions have large STDs by
design.

If these distributions don’t properly model your data, you can use any distribution listed in the scipy.stats module. The
distribution parameter in the configuration should be set to the function name of the distribution in the scipy.stats
module. The parameters key will then be keyword arguments to the function. Make sure to carefully read scipy’s
documentation, as each function is different in how you need to define it. Remember, the samples from the distribution
represent the number of days before that event occurs for a component.

1 distribution: normal
2 parameters: # parameters for distribution chosen above, either mean and std for a built␣

→˓in distribution or kwargs to the scipy function
3 mean: 1460 # years converted to days
4 std: 365 # days

4 Chapter 1. About

https://en.wikipedia.org/wiki/Weibull_distribution
https://docs.scipy.org/doc/scipy/reference/stats.html

PVRPM, Release 1.5.0

Failure Setup

PVRPM currently has two failure modes: total failures and concurrent failures. Total failure modes use the shortest
time to failure taken from the defined failures as the time it takes for a component to completely fail. Every component
gets a different time to failure, depending on the samples drawn from the distribution.

For a total failure setup, the failure requires the distribution, its parameters, the labor time to fix a component, and the
cost to repair the component.

Optionally, there are two fraction modes for a failure: fraction and decay_fraction. Setting the fraction will tell PVRPM
to fail that fraction (between 0 and 1) of components in the component level consistently throughout the simulation. This
means PVRPM will maintain fraction of the components with this failure mode throughout the simulation. Remember,
PVRPM will always pick the failure mode in this section with the shortest time to failure, so if you set two failures
mode, where one is always shorter than the other, then the longer failure mode will never occur, even if the fraction
is defined on the longer failure mode. The decay_fraction also selects decay_fraction of the components to fail;
however, it decays with each failure. If you set decay_fraction to 0.5, then at first, 50 percent of the components will
fail with this failure mode, then 25 percent, then 12.5 percent, etc., until it goes to 0.

A typical setup of failures is to have a long “end of life” failure with a large time, and failures with shorter time to
failures with a fraction or decay_fraction, so some will fail with the shorter failures, and most will fail with the end of
life failure.

Concurrent failures work the same way as above, except each failure mode is counted concurrently. This means that
failure modes defined as concurrent failures do not have the shortest time picked among the modes; instead, each
failure mode will fail the component independent of each other and the total failure mode. You can view this
mode as “partial failures”, where failures of this nature happen more often than total failures but cost less and are faster
to repair. You can use fraction and decay_fraction here as needed.

A typical setup for concurrent failure modes is to list routine failures every year or two to a fraction of the components.

Total failure mode chooses the quickest time to failure from the different modes, and concurrent failure modes all
operate independently of each other; they fail each component independent of other failures. Further note, when a
component is repaired from a *total failure*, all *concurrent failures* get reset since this is a full replacement,
and the partial failures that affected the old component won’t affect the new one.

1 failures:
2 eol_failures: # this key name can be anything you want
3 distribution: normal
4 parameters: # parameters for distribution chosen above, either mean and std for a␣

→˓built in distribution or kwargs to the scipy function
5 mean: 3650 # years converted to days
6 std: 365 # days
7 labor_time: 2 # in hours
8 cost: 322 # in USD
9 routine_failures: # this key name can be anything you want

10 distribution: normal
11 parameters:
12 mean: 365 # mean in days, or you can do 1 / (num_failures / year * 365)
13 std: 365
14 labor_time: 2 # in hours
15 cost: 322 # in USD
16 fraction: 0.1 # > 0 and < 1, fraction of these components that are normal failures,␣

→˓maintained throughout the simulation
17 defective_failures: # this key name can be anything you want
18 distribution: exponential
19 parameters:

(continues on next page)

1.2. Getting Started 5

PVRPM, Release 1.5.0

(continued from previous page)

20 mean: 100 # mean in days, or you can do 1 / (num_failures / year * 365)
21 labor_time: 2 # in hours
22 cost: 322 # in USD
23 decay_fraction: 0.2 # > 0 and < 1, fraction of these components that are defective
24

25 concurrent_failures: # this happens all in parallel, independent of each other
26 cell_failure: # this key name can be anything you want
27 distribution: normal
28 parameters: # parameters for distribution chosen above, either mean and std for a␣

→˓built in distribution or kwargs to the scipy function
29 mean: 365 # years converted to days
30 std: 365 # days
31 labor_time: 2 # in hours
32 cost: 322 # in USD
33 decay_fraction: 0.2
34 wiring_failure: # this key name can be anything you want
35 distribution: normal
36 parameters:
37 mean: 365 # mean in days, or you can do 1 / (num_failures / year * 365)
38 std: 365
39 labor_time: 2 # in hours
40 cost: 322 # in USD
41 fraction: 0.1 # > 0 and < 1, fraction of these components that are normal failures,␣

→˓maintained throughout the simulation

Repair Setup

Repairs are much more straightforward. They only need the distribution and its parameters defined for every repair
mode. You can either have one repair mode that applies to all failures or a repair mode for each failure mode. You also
must list repairs for total failures and concurrent failures separately.

1 repairs:
2 all_repairs: # this key name can be anything you want
3 distribution: lognormal
4 parameters:
5 mean: 60 # in days
6 std: 20 # in days
7

8 concurrent_repairs:
9 cell_repair: # this key name can be anything you want

10 distribution: lognormal
11 parameters:
12 mean: 7 # in days
13 std: 3 # in days
14

15 wire_repair: # this key name can be anything you want
16 distribution: lognormal
17 parameters:
18 mean: 3 # in days
19 std: 3 # in days

6 Chapter 1. About

PVRPM, Release 1.5.0

Monitoring

Multiple monitoring modes are available for components. You can remove any section you are not using. It is also
optional; you can disable all monitoring, in which components that fail are immediately repaired. The modes available
are:

• Component Level: monitoring at the level of the component, which usually offers quick time to detection.

• Cross Level: monitoring done at a higher level to lower-level components. Meaning inverter monitoring string,
combiner, etc.

• Independent: monitoring done independently of any component level, such as drone IR imaging.

Component level monitoring is defined under each component level’s configuration. It simply requires distribution and
parameters that signify the time to detection in days to detect a failed component in this level.

1 monitoring:
2 normal_monitoring: # this key name can be anything you want
3 distribution: exponential
4 parameters:
5 mean: 5

Cross-level monitoring is a bit more complex. Alongside the distribution and parameters, some thresholds control how
the monitoring works. A global_threshold option defines the fraction of components in the monitored level must fail
before monitoring can detect failed components. This can be seen as enough modules to fail before monitoring at the
inverter can start detecting those failures. In PVRPM, this is replicated by the global_threshold must be met before
time to detection counts down. There is also a failure_per_threshold, the fraction of lower level components that must
fail per upper-level component. For example, if monitoring at the string with a failure_per_threshold of 0.1, then
10 percent of modules under a single string must fail before the string monitoring can detect module failures. Both
thresholds can be defined simultaneously, but one must be defined for this monitoring to work.

1 component_level_monitoring:
2 # lists what monitoring each component level has for levels BELOW it
3 # this is for cross level monitoring only, for defining monitoring at each level use the␣

→˓monitoring distributions above
4 string: # component level that has the monitoring for levels below
5 module: # componenet level that is below's key. same keys used above: module, string,␣

→˓combiner, inverter, disconnect, grid, transformer
6 global_threshold: 0.2 # fraction on [0, 1] that specifies how many of this component␣

→˓type must fail before detection can occur.
7 # this means that until this threshold is met, component␣

→˓failures can never be detected
8 # In the simulation, the time to detection doesn't count down␣

→˓until this threshold is met, which at that point the compouning function will be used␣
→˓along with the distribution as normal

9 failure_per_threshold: 0.1 # the fraction of components that must fail per string␣
→˓for failures to be detected at that specified string, or if the total number of␣
→˓failures reach the global_threshold above

10 distribution: normal # distribution that defines how long this monitoring takes to␣
→˓detect a failure at this level (independent)

11 # the value calculated from this distribution will be reduced␣
→˓by the compounding factor for every failure in this level

12 parameters:
13 mean: 1200
14 std: 365

(continues on next page)

1.2. Getting Started 7

PVRPM, Release 1.5.0

(continued from previous page)

15

16 combiner:
17 string:
18 failure_per_threshold: 0.2 # this fraction of strings must fail on a specific␣

→˓combiner for detection for those to start
19 # failures are not compounded globally in this case, only per each combiner
20 distribution: normal # distribution that defines how long this monitoring takes to␣

→˓detect a failure at this level (independent)
21 parameters:
22 mean: 1825
23 std: 365

Independent monitoring works outside of component levels. It represents monitoring that detects all failures in any
component level instantly. It can happen statically every set number of days, defined by the interval, or at a threshold of
failed components. There are a few ways to define this threshold. First, the threshold can be defined as global_threshold,
which works differently than cross-level monitoring. This value is based on the DC availability, meaning the power
reaching the inverter. This is calculated using the operating strings and combiners to determine how many modules
reach the inverter. With this, combiners and strings are weighted higher than module failures.

The other way to define a threshold is more similar to cross-level monitoring. Using the failure_per_threshold sets
a threshold of failed components for each level that must be reached before monitoring occurs. This uses OR logic,
meaning only one level has to drop below this threshold for the independent monitoring for all levels.

Finally, you can combine all these arguments together; interval, global_threshold, and failure_per_threshold.

You must specify the labor time for each independent monitoring defined, which is in hours for other parameters. There
is also an optional distribution and parameters that can be defined as the time_to_detection for components under the
levels when the independent monitoring occurs. Think of it as the time it takes to complete the independent monitoring.
Not setting this means that the time_to_detection gets set to zero when independent monitoring occurs.

1 indep_monitoring:
2 drone_ir: # this name can be anything you want!
3 interval: 1095 # interval in days when this static monitoring occurs
4 cost: 50000 # cost of this monitoring in USD
5 labor_time: 1 # in hours
6 distribution: normal
7 parameters:
8 mean: 14
9 std: 5

10 levels: # the component levels this detects on
11 - module
12 - string
13 - combiner
14

15 drone_ir2: # list as many static monitoring methods as you want
16 interval: 365 # this monitoring will happen every 365 days, alongside the threshold.
17 # a indep monitoring triggered by a threshold RESETs the countdown to the interval
18 global_threshold: 0.1 # if DC availability drops by this threshold amount, then this␣

→˓indep monitoring will occur
19 # DC availability is the DC power reaching the inverter(s), which is affected by␣

→˓combiners, strings, and module failures
20 failure_per_threshold: 0.2 # this threshold is PER LEVEL, if the availability of ANY␣

→˓of the defined levels drops by this threshold amount, this indep monitoring will occur
21 cost: 100000

(continues on next page)

8 Chapter 1. About

PVRPM, Release 1.5.0

(continued from previous page)

22 labor_time: 1 # in hours
23 levels:
24 - module
25 - combiner
26 - string
27

28 drone_ir3: # list as many static monitoring methods as you want
29 failure_per_threshold: 0.2 # this threshold is PER LEVEL, people if the availability␣

→˓of ANY of the defined levels drops by this threshold amount, this indep monitoring␣
→˓will occur

30 cost: 1500
31 labor_time: 1 # in hours
32 levels:
33 - module

1.2.7 Running the simulation

The example configuration provided shows how all these options are defined; please consult it as necessary.

Now that you have your SAM case JSONs, and your PVRPM configuration, you can run the simulation:

1 pvrpm run --case /path/to/directory/with/jsons /path/to/pvrpm/config.yaml

You can also parallelize realizations to decrease the overall run time. To use all your CPU cores to run PVRPM:

1 pvrpm run --case /path/to/directory/with/jsons --threads 0 /path/to/pvrpm/config.yaml
2

3 PVRPM will alert you to unknown keys in your configuration if you misspelled something␣
→˓and tell you any incorrect or missing parameters you may have.

Once the simulation is completed, result graphs and CSV files will be saved to the defined results folder.

1.3 Installation

This document covers installation and setup of the tool. The tool requires you to build a valid case in SAM, so if you
haven’t already download and install SAM from here: https://sam.nrel.gov/download.html

Currently, the supported SAM version is 2020.11.29!

SAM can be installed on Windows, MAC, or Linux.

1.3.1 Installation

Requires python >= 3.8

Works on any x64 OS.

Recommended using pip: (Replace @master with the branch release name if you want a release version)

1.3. Installation 9

https://sam.nrel.gov/download.html

PVRPM, Release 1.5.0

1 # for latest development branch
2 pip install git+https://github.com/FSEC-Photovoltaics/pvrpm-lcoe/@master
3

4 # for specific version
5 pip install git+https://github.com/FSEC-Photovoltaics/pvrpm-lcoe/@vx.x.x

Using the wheel file downloaded from https://github.com/FSEC-Photovoltaics/pvrpm-lcoe/releases

1 pip install wheel
2 pip install pvrpm-x.x.x-py3-none-any.whl

Manually:

1 git clone https://github.com/FSEC-Photovoltaics/pvrpm-lcoe
2 cd pvrpm-lcoe
3 python setup.py install

If you want to build the documentation:

1 git clone https://github.com/FSEC-Photovoltaics/pvrpm-lcoe
2 cd pvrpm-lcoe
3 pip install .[docs]
4 cd docs
5 make html

If you want to run automated tests (will take a while based on compute power):

1 git clone https://github.com/FSEC-Photovoltaics/pvrpm-lcoe
2 cd pvrpm-lcoe
3 pip install .[testing]
4 pytest

1.4 Logic Diagram

Here is a set of diagrams to understand how the simulation runs. Each module has a set of functions: init, reinit, and
update. Init describes the logic to handle the initial creation at the beginning of the simulation. Reinit describes how
to reinitialize components that are repaired. Update gives the logic of what happens on each day of the simulation.

10 Chapter 1. About

https://github.com/FSEC-Photovoltaics/pvrpm-lcoe/releases

PVRPM, Release 1.5.0

1.4. Logic Diagram 11

PVRPM, Release 1.5.0

1.5 Example YAML Configuration

Please read all the comments carefully, there are many options for each section of PVRPM.

module_order: # the order the modules of this case should be executed
check to see what modules you use by the name of the json output files
typically, this should be Pvsamv1 -> grid -> utiltiy -> others
see https://nrel-pysam.readthedocs.io/en/master/Configs.html#sam-

→˓simulation-configurations
Only detailed PV models are supported, which is Pvsamv1, your case must have this␣
→˓module
Also, only LCOE calculators that support lifetime are allowed, PVRPM will check this␣
→˓and notify you if your LCOE calculator doesn't support lifetime
- Pvsamv1
- Grid
- Utilityrate5
- Cashloan

Run Setup
results folder doesn't need to exist, it will be created if it doesnt already
For windows use single backslash. Do not need to escape spaces in folder names
results_folder: /path/to/results/folder
num_realizations: 2 # number of realizations to run
conf_interval: 90 #XX % confidence interval around the mean will be calculated for␣
→˓summary results

Case Setup
num_combiners: 2 # total number of DC combiner boxes
num_transformers: 1 # total number of Transformers
num_trackers: 2 # total number of trackers

Financial Inputs
present_day_labor_rate: 100 # dollars per hour
inflation: 2.5 # in percent

Failure Tracker Algorithm
use_worst_case_tracker: false

Component Information
The structure of the user-entered component information is as follows:
#**NOTE: components currently include: module, string, combiner, inverter, disconnect,␣

→˓transformer, grid, and (optional) tracker

component.
name = a string containing the name of the component type, used for error␣
→˓reporting
can_fail = true if component is allowed to fail
can_repair = true if component is allowed to be repaired after failing
can_monitor = true if component's failures use component level monitoring
This can be false and replaced with other monitoring methods, see␣
→˓below for independent and cross level monitoring sections
if can_repair, can_monitor or can_fail is false, you can remove their␣
→˓respective section below (failures, monitoring and repairs) (continues on next page)

12 Chapter 1. About

PVRPM, Release 1.5.0

(continued from previous page)

warranty (can remove this section if no warranty)
days = number of days that the warranty is for (e.g. a 20 year warranty would␣
→˓be 20 * 365 days)
failures (list as many failures as needed)
distribution = distribution type of this failure mode
parameters = parameters for this failure mode
mean: mean in days for this failure mode's distribution
std: standard deviation for this failure mode's distribution (not all␣
→˓distributions need std)
labor_time = number of hours of labor it takes to repair this type of failure
cost = parts cost to repair this type of failure
cost_per_watt (optional) = USD per watt cost of failure FOR INVERTERS ONLY.␣
→˓This will OVERRIDE the cost if specified for a failure
by multiplying this value by the inverter size. If you want to set a static␣
→˓cost, use the cost parameter as normal
fraction (optional) = If fraction is defined, then this failure mode is a␣
→˓defective failure mode, and "fraction" represents the fraction of this type of␣
→˓component that are defective. This fraction of components with this failure mode is␣
→˓maintained throughout the simulation.
decay_fraction (optional) = Works similiarly to fraction, except the fraction␣
→˓of affected components decays. For example, if 0.5 is defined, then half of the␣
→˓components have this failure mode. Once those are repaired, half of the repaired␣
→˓components will have this failure mode, and so on.
concurrent_failures (these failures are all tracked in parallel, meaning a␣
→˓component can fail with these failure modes while another failure mode like above is␣
→˓still counting down)
list failures same as failures above
monitoring: this section specfies how long each failure takes to be detected by␣
→˓monitoring. This occurs before repair time begins. This should either be 1 section for␣
→˓all failures or a section for each failure
distribution = distribution type of monitoring times
parameters = parameters of the monitoring distribution
mean: mean in days for this monitoring mode's distribution
std: standard deviation for this monitoring mode's distribution (not all␣
→˓distributions need std)
repairs (list a repair for each failure, or only 1 repair for all failures)
distribution = distribution type of repair times
parameters = parameters of the repair distribution
mean: mean in days for this repair mode's distribution
std: standard deviation for this repair mode's distribution (not all␣
→˓distributions need std)
**NOTE: If there is only ONE repair distribution (repair[0]), then ALL failure␣
→˓modes will use that distribution! Otherwise, # repair modes must equal # failure modes.
concurrent_repairs (repairs for concurrent failure modes, same setup as repairs␣
→˓above)
degradation (MODULES ONLY) (remove if no degradation) (%/year)

Distribution types
PVRPM has some distributions built in, where only a mean and standard deviation is␣
→˓needed to
properly model the failure or repair. Under the hood, PVRPM uses scipy.stats␣
→˓distribution

(continues on next page)

1.5. Example YAML Configuration 13

PVRPM, Release 1.5.0

(continued from previous page)

functions to model these. However, scipy.stats documentation for each function is not␣
→˓very
clear on how to convert the mean and std into usable values for the distribution, which
is why PVRPM will wrap them for you.

However, not every single scipy distribution is wrapped by PVRPM. These are the␣
→˓distributions wrapped by PVRPM (use these as the distribution option):
- exponential
- normal
- uniform
- lognormal
- weibull (can also provide shape for this distribution, see below)
If using one of these distributions, you can simply provide the mean and std in days.
For the weibull distribution: instead of standard deviation (std) you can provide␣
→˓the mean and shape
See here: https://en.wikipedia.org/wiki/Weibull_distribution the shape parameter is k,␣
→˓and lambda is calculated by solving for it using the gamma function and the provided␣
→˓mean.
Otherwise, if you provide the STD for the weibull distribution, it should be a large␣
→˓number otherwise you'll get values extremely close to the mean only

You can also override this, and change the distribution to match the function name of␣
→˓any of the distributions listed here:
https://docs.scipy.org/doc/scipy/reference/stats.html
If you do this, then the "parameters" option will then be a list of kwargs to the␣
→˓scipy function you select. For example, if you want to use the gamma distribution:
distribution: gamma
parameters:
a: 1.99
scale: 100 # 1 / beta
###

module:
name: module # can be anything you want
can_fail: true
can_repair: true
can_monitor: true # leave true to use monitoring distributions

warranty:
days: 7300 # years converted to days

failures:
normal_failures: # this key name can be anything you want
distribution: normal
parameters: # parameters for distribution chosen above, either mean and std for a␣

→˓built in distribution or kwargs to the scipy function
mean: 1460 # years converted to days
std: 365 # days

labor_time: 2 # in hours
cost: 322 # in USD

routine_failures: # this key name can be anything you want
distribution: normal

(continues on next page)

14 Chapter 1. About

PVRPM, Release 1.5.0

(continued from previous page)

parameters:
mean: 365 # mean in days, or you can do 1 / (num_failures / year * 365)
std: 365

labor_time: 2 # in hours
cost: 322 # in USD
fraction: 0.1 # > 0 and < 1, fraction of these components that are normal failures,

→˓ maintained throughout the simulation
defective_failures: # this key name can be anything you want
distribution: exponential
parameters:
mean: 100 # mean in days, or you can do 1 / (num_failures / year * 365)

labor_time: 2 # in hours
cost: 322 # in USD
decay_fraction: 0.2 # > 0 and < 1, fraction of these components that are defective

concurrent_failures: # this happens all in parallel, independent of each other
cell_failure: # this key name can be anything you want
distribution: normal
parameters: # parameters for distribution chosen above, either mean and std for a␣

→˓built in distribution or kwargs to the scipy function
mean: 365 # years converted to days
std: 365 # days

labor_time: 2 # in hours
cost: 322 # in USD
decay_fraction: 0.2

wiring_failure: # this key name can be anything you want
distribution: normal
parameters:
mean: 365 # mean in days, or you can do 1 / (num_failures / year * 365)
std: 365

labor_time: 2 # in hours
cost: 322 # in USD
fraction: 0.1 # > 0 and < 1, fraction of these components that are normal failures,

→˓ maintained throughout the simulation

monitoring:
normal_monitoring: # this key name can be anything you want
distribution: exponential
parameters:
mean: 5

defective_monitoring:
distribution: normal
parameters:
mean: 15
std: 5

repairs:
all_repairs: # this key name can be anything you want

distribution: lognormal
parameters:
mean: 60 # in days

(continues on next page)

1.5. Example YAML Configuration 15

PVRPM, Release 1.5.0

(continued from previous page)

std: 20 # in days

concurrent_repairs:
cell_repair: # this key name can be anything you want

distribution: lognormal
parameters:
mean: 7 # in days
std: 3 # in days

wire_repair: # this key name can be anything you want
distribution: lognormal
parameters:
mean: 3 # in days
std: 3 # in days

degradation: 20 # modules only, how much a module degrades per year in percent

string:
name: string
can_fail: true
can_repair: true
can_monitor: true

failures:
failure: # this key name can be anything you want
distribution: exponential
parameters:
mean: 182.5 # mean in days, or you can do 1 / (num_failures / year * 365)

labor_time: 1 # in hours
cost: 20 # in USD

monitoring:
normal_monitoring: # this key name can be anything you want
distribution: exponential
parameters:
mean: 5

repairs:
all_repairs: # this key name can be anything you want
distribution: lognormal
parameters:
mean: 7 # in days
std: 3 # in days

combiner:
name: combiner
can_fail: true
can_repair: true
can_monitor: true

failures:
failure: # this key name can be anything you want

(continues on next page)

16 Chapter 1. About

PVRPM, Release 1.5.0

(continued from previous page)

distribution: normal
parameters:
mean: 730
std: 182.5

labor_time: 2 # in hours
cost: 976 # in USD

monitoring:
normal_monitoring: # this key name can be anything you want

distribution: exponential
parameters:
mean: 5

repairs:
all_repairs: # this key name can be anything you want

distribution: exponential
parameters:
mean: 3 # in days

inverter:
name: inverter
can_fail: true
can_repair: true
can_monitor: true

failures:
component_failure: # this key name can be anything you want
distribution: exponential
parameters:
mean: 365

labor_time: 0 # in hours
cost_per_watt: 0.07 # in USD, cents/watt. This will be multiplied by the inverter_

→˓size (listed in SAM). Overrides cost
routine_failure:
distribution: exponential
parameters:
mean: 365

labor_time: 0
cost: 1000 # static cost, not multiplied by inverter size

catastrophic_failure:
distribution: normal
parameters:
mean: 500
std: 365.25

labor_time: 0
cost_per_watt: 0.35 # in USD, cents/watt. This will be multiplied by the inverter_

→˓size (listed in SAM). Overrides cost

monitoring:
all_monitoring: # this key name can be anything you want

distribution: exponential
parameters:

(continues on next page)

1.5. Example YAML Configuration 17

PVRPM, Release 1.5.0

(continued from previous page)

mean: 5

repairs:
component_repair: # this key name can be anything you want
distribution: lognormal
parameters:
mean: 3 # in days
std: 1.5

routine_repair:
distribution: exponential
parameters:
mean: 0.5

catastrophic_repair:
distribution: lognormal
parameters:
mean: 3
std: 1.5

disconnect: # A/C disconnect
name: disconnect
can_fail: true
can_repair: true
can_monitor: true

failures:
failure: # this key name can be anything you want
distribution: weibull
parameters:
mean: 1095
std: 1200 # use a large STD for weibull

labor_time: 4 # in hours
cost: 500 # in USD

monitoring:
normal_monitoring: # this key name can be anything you want
distribution: exponential
parameters:
mean: 5

repairs:
all_repairs: # this key name can be anything you want
distribution: lognormal
parameters:
mean: 1 # in days
std: 0.5

transformer:
name: transformer
can_fail: true
can_repair: true
can_monitor: true

(continues on next page)

18 Chapter 1. About

PVRPM, Release 1.5.0

(continued from previous page)

failures:
failure: # this key name can be anything you want
distribution: weibull
parameters:
mean: 365 # can optionally provide the shape which is K parameter on wikipedia␣

→˓page
shape: 0.3477 # lambda is calculated from the mean

labor_time: 10 # in hours
cost: 32868 # in USD

monitoring:
normal_monitoring: # this key name can be anything you want
distribution: exponential
parameters:
mean: 5

repairs:
all_repairs: # this key name can be anything you want
distribution: lognormal
parameters:
mean: 0.25 # in days
std: 0.5

grid:
name: grid
can_fail: true
can_repair: true
can_monitor: true

failures:
failure: # this key name can be anything you want
distribution: weibull
parameters:
mean: 100
shape: 0.75

labor_time: 0 # in hours
cost: 0 # in USD

monitoring:
normal_monitoring: # this key name can be anything you want
distribution: exponential
parameters:
mean: 5

repairs:
all_repairs: # this key name can be anything you want
distribution: exponential
parameters:
mean: 0.5 # in days

tracker: # only required for tracking systems, remove it not using trackers
name: tracker

(continues on next page)

1.5. Example YAML Configuration 19

PVRPM, Release 1.5.0

(continued from previous page)

can_fail: true
can_repair: true
can_monitor: true

failures:
failure: # this key name can be anything you want
distribution: exponential
parameters:
mean: 500

labor_time: 0 # in hours
cost: 2000 # in USD

monitoring:
normal_monitoring: # this key name can be anything you want

distribution: exponential
parameters:
mean: 5

repairs:
all_repairs: # this key name can be anything you want

distribution: lognormal
parameters:
mean: 30 # in days
std: 10

Independent Monitoring Practices
This section defines monitoring practices (like IR drone scans) that happen at an␣
→˓invertal or threshold with a fix cost to reduce time to detection to 0 (i.e detect all␣
→˓failed components which are still in the detection phase from monitoring). or to the␣
→˓distribution sample from the defined distribution
This occurs independent of any component level
Here you can define the interval, cost, and what component levels this services will␣
→˓detect all failures on at each interval
Remove this section if not using it
You can also OPTIONALLY define a distribution that states how long it takes after the␣
→˓monitoring occurs for the failed components to be detected, instead of it being 0. You␣
→˓may omit the distribution to have time to detection go to 0 when monitoring occurs
indep_monitoring:
drone_ir: # this name can be anything you want!

interval: 1095 # interval in days when this static monitoring occurs
cost: 50000 # cost of this monitoring in USD
labor_time: 1 # in hours
distribution: normal
parameters:
mean: 14
std: 5

levels: # the component levels this detects on
- module
- string
- combiner

(continues on next page)

20 Chapter 1. About

PVRPM, Release 1.5.0

(continued from previous page)

drone_ir2: # list as many static monitoring methods as you want
interval: 365 # this monitoring will happen every 365 days, alongside the threshold.
a indep monitoring triggered by a threshold RESETs the countdown to the interval
global_threshold: 0.1 # if DC availability drops by this threshold amount, then this␣

→˓indep monitoring will occur
DC availability is the DC power reaching the inverter(s), which is affected by␣

→˓combiners, strings, and module failures
failure_per_threshold: 0.2 # this threshold is PER LEVEL, if the availability of ANY␣

→˓of the defined levels drops by this threshold amount, this indep monitoring will occur
cost: 100000
labor_time: 1 # in hours
levels:
- module
- combiner
- string

drone_ir3: # list as many static monitoring methods as you want
failure_per_threshold: 0.2 # this threshold is PER LEVEL, people if the availability␣

→˓of ANY of the defined levels drops by this threshold amount, this indep monitoring␣
→˓will occur

cost: 1500
labor_time: 1 # in hours
levels:
- module

Cross level component monitoring
This next section will define optional cross level component monitoring. This means␣
→˓that you can define monitoring at higher component
levels for the component levels below it (i.e inverter monitoring modules). These come␣
→˓with extra parameters to define failure dependence,
meaning how more failures contribute to quicker detection times from monitoring. This␣
→˓is done by user defined functions and parameters.
This is only available for all levels except tracker, grid, and module. The monitoring␣
→˓defined here is also overrided by monitoring at the level defined above, meaning that␣
→˓if you define monitoring for modules above under the module section, monitoring of␣
→˓modules defined below will be ignored.
Also, each level can only be monitored by one higher component level, meaning that if␣
→˓you define monitoring of modules at both the string and inverter level, PVRPM will␣
→˓only use the monitoring distribution and compounding of the monitoring at the string␣
→˓level for modules.

component_level: The level in which monitors levels below it
component_monitoring: The level being monitored, must be a level below the component␣
→˓level defined above
YOU MUST PROVIDE EITHER GLOBAL_THRESHOLD OR FAILURE_PER_THRESHOLD, or you can␣
→˓provide both
global_threshold (float): fraction on [0, 1] that defines how many of the␣
→˓components must fail across ALL MONITORED COMPONENTS before monitoring can start␣
→˓detecting failures. Component failures will never be detected, and therefore not␣
→˓repaired, until this fraction of failed components is met.
failure_per_threshold (float): fraction on [0, 1] that defines how many components␣
→˓must fail under EACH COMPONENT BEING MONITORED AT THIS LEVEL. This means that if there␣
→˓are 8 combiners that monitor 64 strings, every combiner will monitor 8 strings, and␣
→˓the defined failure_per_threshold must fail under that combiner in order for those␣
→˓failures to start being detected, as such you can define a total number of failures␣
→˓across all the monitored components and also the number of failures per monitor level␣
→˓component.

(continues on next page)

1.5. Example YAML Configuration 21

PVRPM, Release 1.5.0

(continued from previous page)

As another example, if there 8 combiners monitoring 64 strings, and enough strings␣
→˓fail under combiner 1 to detect those failures, but not enough to meet the global_
→˓threshold total, if strings fail under combiner 2 they wont be detected until they␣
→˓either reach failure_per_threshold for that combiner or the global global_threshold
compounding_function (str): The function used to defined how more failures reduce␣
→˓the time to detection from monitoring (NOT IMPLEMENTED)
compound_parameters: parameters for the function above, see below for list of␣
→˓functions and their parameters (NOT IMPLEMENTED)
distribution = distribution type of monitoring times
parameters = parameters of the monitoring distribution
mean: mean in days for this monitoring mode's distribution
std: standard deviation for this monitoring mode's distribution (not all␣
→˓distributions need std)

this section below is optional, remove if you aren't using it
component_level_monitoring:
lists what monitoring each component level has for levels BELOW it
this is for cross level monitoring only, for defining monitoring at each level use␣

→˓the monitoring distributions above
string: # component level that has the monitoring for levels below
module: # componenet level that is below's key. same keys used above: module, string,␣

→˓combiner, inverter, disconnect, grid, transformer
global_threshold: 0.2 # fraction on [0, 1] that specifies how many of this␣

→˓component type must fail before detection can occur.
this means that until this threshold is met, component␣

→˓failures can never be detected
In the simulation, the time to detection doesn't count␣

→˓down until this threshold is met, which at that point the compouning function will be␣
→˓used along with the distribution as normal

failure_per_threshold: 0.1 # the fraction of components that must fail per string␣
→˓for failures to be detected at that specified string, or if the total number of␣
→˓failures reach the global_threshold above

distribution: normal # distribution that defines how long this monitoring takes to␣
→˓detect a failure at this level (independent)

the value calculated from this distribution will be reduced␣
→˓by the compounding factor for every failure in this level

parameters:
mean: 1200
std: 365

combiner:
string:

failure_per_threshold: 0.2 # this fraction of strings must fail on a specific␣
→˓combiner for detection for those to start

failures are not compounded globally in this case, only per each combiner
distribution: normal # distribution that defines how long this monitoring takes␣

→˓to detect a failure at this level (independent)
parameters:
mean: 1825
std: 365

module: # since module level monitoring is defined for strings, this will be ignored␣
→˓as the higher level takes precedant (continues on next page)

22 Chapter 1. About

PVRPM, Release 1.5.0

(continued from previous page)

global_threshold: 0.4 # fraction on [0, 1] that specifies how many of this␣
→˓component type must fail before detection can occur.

failure_per_threshold: 0.3
distribution: normal # distribution that defines how long this monitoring takes to␣

→˓detect a failure at this level (independent)
parameters:
mean: 3650
std: 365

inverter:
combiner:
global_threshold: 0.1 # fraction on [0, 1] that specifies how many of this␣

→˓component type must fail before detection can occur.
distribution: lognormal
parameters:
mean: 365
std: 365

string:
global_threshold: 0.2 # fraction on [0, 1] that specifies how many of this␣

→˓component type must fail before detection can occur.
distribution: exponential
parameters:
mean: 3650

module:
global_threshold: 0.5 # fraction on [0, 1] that specifies how many of this␣

→˓component type must fail before detection can occur.
distribution: lognormal
parameters:
mean: 3650
std: 365

1.6 pvrpm

1.6.1 pvrpm package

Subpackages

pvrpm.core package

Subpackages

pvrpm.core.modules package

Submodules

pvrpm.core.modules.failure module

1.6. pvrpm 23

PVRPM, Release 1.5.0

pvrpm.core.modules.monitor module

pvrpm.core.modules.repair module

Module contents

Submodules

pvrpm.core.case module

pvrpm.core.components module

pvrpm.core.enums module

pvrpm.core.exceptions module

pvrpm.core.logger module

pvrpm.core.simulation module

pvrpm.core.utils module

Module contents

Module contents

24 Chapter 1. About

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

25

	About
	SAM/PVRPM Assumptions / Limitations
	Getting Started
	Exporting the SAM Case
	Configuring PVRPM
	Module Order
	Run Setup
	Case Setup
	Component Level Setup
	Component Behaviors
	Warranty
	Distributions for Failures, Repairs, Monitoring
	Failure Setup
	Repair Setup
	Monitoring

	Running the simulation

	Installation
	Installation

	Logic Diagram
	Example YAML Configuration
	pvrpm
	pvrpm package
	Subpackages
	pvrpm.core package
	Subpackages
	pvrpm.core.modules package
	Submodules
	pvrpm.core.modules.failure module
	pvrpm.core.modules.monitor module
	pvrpm.core.modules.repair module
	Module contents
	Submodules
	pvrpm.core.case module
	pvrpm.core.components module
	pvrpm.core.enums module
	pvrpm.core.exceptions module
	pvrpm.core.logger module
	pvrpm.core.simulation module
	pvrpm.core.utils module
	Module contents

	Module contents

	Indices and tables

